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I. Introduction 
A reader performing a quick perusal of lists of titles 

appearing in the chemical, physical, mathematical, 
biological, and engineering scientific literature cannot 
fail to note that in recent years there has been a virtual 
explosion in the use of the word “chaos”. Such diverse 
phenomena and fields as heartbeats, brain waves, 
weather patterns, turbulent flows, periodic chemical 
reaction, and particle accelerator design have all felt the 
impact of this relatively new concept. In this Account 
we try to explain what chaos means to spectroscopy and 
how chaotic motion impacts on atomic and molecular 
spectroscopy. As always in spectroscopy, the problem 
will be to go from spectral observations in the form of 
spectral lines and bands to a model of the molecule and 
its motions. The model of the molecule and the types 
of molecular motions are what we aim to learn. The 
reason we believe in our model is that when the equa- 
tions of quantum and/or classical mechanics are applied 
to the model, the experimentally measured spectrum 
or features thereof are reproduced. The common fea- 
ture that a spectroscopic problem has with the other 
fields that use the “chaos” label is that the equations 
describing the motion (in our case, the equation of 
classical mechanics) are nonlinear and have at least one 
class of solutions that are exquisitely sensitive to initial 
conditions. In what follows we shall attempt to describe 
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what a chaotic spectrum is and how we use the ideas 
of chaos to extract from it a model of the molecular 
motion. 

A chaotic spectrum is congested and complex. The 
lines are transitions between states, one or both of 
which cannot be assigned quantum numbers other than 
that for the energy and total angular momentum. As 
such the spectral lines are intrinsically unassignable. It 
is also fair to say that the inability of spectroscopists 
to make an assignment only hints, but does not dem- 
onstrate, that a spectrum is chaotic. The final word 
comes when interpretative methods that assume that 
the spectrum is chaotic succeed in explaining features 
of the spectrum. Chaotic spectra have been seen in 
many systems, the most famous of which are the ro- 
vibrational spectrum of the ground state of acetylene 
around 27 OW cm-l,’ the photodissociation spectrum of 
excited predissociating H3+ and the rovibrational 
spectrum above 250 cm-’ of the sodium trimer, Na3.3 
In atomic physics the best known chaotic spectra are 
those involving transitions ending near the ionization 
threshold of the hydrogen atom in a 6-T magnetic field.4 
Generally chaotic spectra appear when highly excited 
electronic and/or rovibrational states are probed. In 
floppy molecules like Na3 and in nonrigid clusters, chaos 
and chaotic spectra appear at surprisingly low energies. 
In spectroscopically identifying reactants, products, and 
transition states of chemical reactions, chaotic spectra 
appeara2 The chemical dynamics then involves chaotic 
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dynamics and hence our added interest. 
The question addressed here is how information 

about the motions of the system’s constituent particles 
can be extracted from a chaotic spectrum. Due to space 
limitations in this Account, only one system, the sodium 
trimer, will be used as an example. It has been chosen 
because it is the simplest to understand and therefore 
requires less background to analyze and describe. 

11. Regular and Chaotic Spectra 
A. Regular Spectroscopy, Regular States, and 

Regular Motions. Spectroscopy as most chemists 
know it is regular spectroscopy and refers to that type 
of atomic and molecular spectroscopy typically covered 
in the books of G. Her~be rg .~  Regular spectroscopy 
assumes that the initial and final states of a transition 
can be assigned N (equal to the number of degrees of 
freedom) quantum numbers. More fundamentally, it 
assumes that there exists a coordinate system, albeit 
convoluted or even nonanalytically related to the usual 
textbook coordinates, in which the major part, Ho, of 
the Hamiltonian, H ,  of the system is essentially se- 
parable. For vibrational motions,6 such coordinate 
systems are normal modes, local modes, mixed modes, 
etc. Since the system is essentially separable, quantum 
mechanics tells us that each degree of freedom (ith 
mode) has its own associated quantum levels n, and its 
own one degree of freedom wave functions $On., with n, 
- 1 nodes. The states of Ho have a wave function, $OE, 
which is the product of the N one-mode wave functions 
$On,. If ni is the quantum number associated with the 
state of the ith degree of freedom, then ti = (nl, n2, ..., 
nN) is the assignment of the state of Ho. Regular 
spectroscopy assumes that ti can be used to label (reg- 
ular) states of the full system controlled by H in the 
sense that a perturbation theory starting with Ho and 
$On will converge to an exact unique eigenstate, $n of 
H. If two or more different H<s and $ O A ) s  give con- 
vergent results, the one with the biggest integral overlap 
of gon and converges faster and is the better as- 
signment. The pattern of states of the system and 
therefore the pattern of lines in the spectrum can then 
be related to changes in the various ni quantum num- 
bers. 

As said, chaotic spectroscopy involves high densities 
of lines and therefore a high density of states. This 
latter means that we are working in the correspondence 
region and that quantum guided classical (and vice 
versa) ideas will be used to interpret chaotic spectra. 
For this reason, and because particle motions are 
thought of classically, it behooves us, before discussing 
chaos, to review first the semiclassical view of a regular 
quantum state A and to consider the associated classical 
motions. Semiclassical mechanics associates the state 
A with a very particular “quantizable” trajectory that 
moves in the 2N-dimensional phase space of positions 
( 4 )  and momenta ( p )  of the vibrating atoms. This 
trajectory like most trajectories in the regular state 
region can be shown to move on the surface of an N -  
dimensional torus which itself lies on the surface de- 
fined by the trajectory’s constant energy, E = H(p ,q ) .  
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be restricted to vibrational motions. 
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Figure 1. (a) A quasiperiodic trajectory computed at E = 575 
cm-’ and J = 0 for Na3 represented by the potential surface of 
ref 12. R and r are mass scaled Jacobi coordinates, and the solid 
outer line is an equipotential for Na3 held in CZu position. The 
dark line through the quasiperiodic trajectory is a symmetric 
stretch periodic orbit typical of many periodic orbits (tori in 1D) 
which have been tested and found not to contribute significantly 
to the spectra. In the upper-right corner are, in the more rec- 
ognizable displacement coordinates, pictures of the coupled 
motions represented by the trajectory. (b) A chaotic trajectory 
for Na3 run at E = 575 cm-’. It is generic to the region of the 
experiment. Figures l a  and l b  differ in initial conditions. Figure 
l b  reprinted with permission from ref 7.  Copyright 1989 American 
Institute of Physics. 

Phase space is essentially filled with such trajectories 
on tori, but the f i  quantum state is associated with that 
particular torus (trajectory) that has N independent 
constants of the motion called actions J (which all tori 
in the regular region have) that satisfy Ji = (ni + 1/2) 
when computed from the trajectories’ motion. All tori, 
including our quantizable ones, when projected into the 
coordinate plane, reveal a quasiperiodic (almost but 
never quite periodic) motion. 

Figure l a  shows a projection of such a quasiperiodic 
trajectory for the Na3 trimer where a time-stepped 
reading of the trajectory’s coordinates would enable 
visualization of a simultaneous bending and symmetric 
stretch of the obtuse triangular molecule. In the figure, 
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the usual "arrow" diagrams are given for the two modes 
in the usual displacement coordinates? Our figure looks 
different because Figure l a  is in internal Jacobi coor- 
dinates. In molecules, regular quantum states generally 
roughly occur in the same energy and mode coupling 
ranges in which classical tori (quasiperiodic trajectories) 
exist. Moreover, regular wave functions have their re- 
gions of big amplitude in the same region of coordinate 
space as the quantizable quasiperiodic trajectories; off 
the torus, the wave functions damp exponentially. 

B. Chaotic Spectra, Chaotic States, and Chaotic 
Motions. As the energy increases, the nonlinear mode 
coupling between once nearly separable modes or co- 
ordinates usually becomes larger and/or the potential 
changes its nature and scale, again usually becoming 
larger. When this happens, our regular tori and states 
begin to disappear. If no new separable Ho can be found 
(e.g., normal to local mode transition), many things now 
happen. First, because of the big couplings, a splitting 
occurs, which, along with the increase in potential di- 
mensions of degenerate levels, causes a high density of 
states. The states themselves no longer are dominated 
by a $On, and as such the wave functions can only be 
labeled by a few (<N) such quantum numbers as energy 
(E)  and total angular momentum. The wave functions 
also become erratic in nodal pattern, highly oscillatory 
in amplitude, and generally delocalized, being confined 
only by the potential itself. Trajectories also become 
in the same sense delocalized by filling the energy shell 
and by becoming erratic in motion, sensitive to initial 
conditions, and, in short, chaotic. 

Figure l b  shows such a trajectory in the case of Na3. 
The propellor shape is due to the trigonal nature of the 
bounding potential and reflects the possibility of Na 
interchange. The one-to-one correspondence between 
trajectories and states is lost as is "assignability". 
Transitions into such a region yield congested, unas- 
signable chaotic spectra. The trajectories and particle 
motions, the wave function's nodal patterns and am- 
plitude gyrations, and the spectral lines become so 
complex that they defy systematic cataloging or cate- 
gorizing. Statistical patterns and distributions of lines718 
which are detached from dynamic interpretations are 
used for a minimal and relatively uninformative cate- 
gorization of the spectra. 

I t  would seem that nothing dynamically worth 
knowing can be learned from chaotic spectra. This 
would remain true were it not for a saving grace. In our 
description of the onset of chaos, we assumed that as 
the potential (coupling) grew larger in strength and size, 
it affected all coordinates at once. Fortunately this does 
not happen for the cases studied so far until such high 
energies that dissociation and ionization has occurred. 
What does happen?*" Simply put, the potential 
coupling and changes cause only some degrees of free- 
dom to go chaotic. The mechanical results of this can 
be anticipated from our above discussion. Depending 
on the system, tori can still exist in n = 1 or n = 2 or 
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... n = N - 1 reduced dimensions; we call these re- 
duced-dimension tori. Most N-dimensional trajectories 
act chaotically in all degrees of freedom except when 
they approach the region of phase space where the re- 
duced-dimension tori exist. At this point, they move 
nearly quasiperiodically in the reduced-dimension 
space, i.e., they mimic the motion on the reduced-di- 
mension tori for several picoseconds before they leave 
the region and again act chaotically. As such, a subset 
of almost regular motions exists for this short time. 
Correspondingly, the wave function looks chaotic (low 
amplitude, highly oscillatory, no simple model patterns) 
and is unassignable except in those regions of coordinate 
space and energy where the quantizable reduced-di- 
mension tori exist; there it looks regular and has much 
bigger amplitude (square root of the probability) than 
in other regions of space and energy. Since most of the 
trajectory and $ is chaotic, the state density is still high 
due to the coupling among the chaotic coordinates and 
the ranges of the regular coordinates not near the re- 
duced-dimension tori. The high-resolution spectrum 
is however still uninterpretable. This is unfortunate as 
there exists a simply understood motion, namely, that 
almost-quasiperiodic motion that mimics the reduced- 
dimension tori. This regular motion inserted into the 
chaotic trajectory is itself a short-lived (here picose- 
conds) species. 

Like motion in all short-lived species, e.g., transition 
states, resonant scattering states, etc., knowledge of it 
is worth having. What can one do to go from the ex- 
perimental spectrum to the knowledge of the motion 
of the reduced-dimension tori? The answer comes from 
the essence of chaos. Chaotic trajectories (or more 
precisely the parts of a trajectory that are chaotic) are 
greatly different if the initial conditions change and in 
particular if the energy changes. Likewise chaotic wave 
functions change greatly with energy in regions not 
located over configuration-space projections of the re- 
duced-dimension tori. Low-resolution experiments that 
average over energy should, because they average the 
different erratic motions or wave function oscillations, 
deemphasize the chaotic motions, and emphasize the 
regular spectra of the regular inserted motions that 
mimic the reduced-dimension tori. We now turn to the 
question of how one calculates these low-resolution 
spectra which are seen to reveal the dynamics of re- 
duced-dimension tori. The Na3 system will be our ex- 
a m ~ l e ; ~ ~ ~  comparison of experiment and theory will be 
the "proof" of our ideas. 
111. Low-Resolution Spectra of the Sodium 
Trimer 

In the experiment of interest, sodium trimer is pro- 
duced in an optimally cooled beam assuring that it is 
in its ground vibronic state and low (J < 20) rotation 
states3 It is then excited with a single photon to the 
lowest regular vibrational state of the electronically 
excited C 2E"(0) state. From parallel regular type 
spectroscopic experiments, the geometry of the C state 
and its frequencies are known, and from this a simple 
normal mode ground vibrational wave function 
can be constructed."JO A second laser is used to stim- 
ulate emission (stimulated emission pumping') down 
to the rovibration levels of the ground state. Since those 
molecules that do not emit are ionized by absorbing a 
second photon of the first laser, the ionization signal 
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Figure 2. The stimulated emission pumping spectrum of Na3 
referred to in the text from ref 3. Reprinted with permission from 
ref 7.  Copyright 1989 American Institute of Physics. 
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Figure 3. The survival probability C ( t )  of (a) the stimulated 
emission pumping experiment and of (b) theory. The peak at 
t = 2 is an overtone of the one at t = 0.5. The first and third peaks 
are fundamentals. Reprinted with permission from ref 7. 
Copyright 1989 American Institute of Physics. 

dips at the emission frequencies. The spectrum below 
250 cm-’ is regular, assignable, and explainable3 as due 
to four observed out of five theoretically possible levels. 
In terms of three normal modes, these are a symmetric 
stretch mode, a bend mode, and an asymmetric stretch 
mode at frequencies 139,49, and 87 cm-l, respectively. 
Figure l a  (upper-right corner) shows pictures of two of 
these motions. 

Figure 2 shows a low-resolution (5 cm-’) spectrum in 
which the reproducible fine structure hints at a very 
congested, erratic, chaotic high-resolution spectrum, and 
the gross outlines show the low-resolution spectra and 
are suggestive of a double o~cillation.~ The frequencies 
of the latter double oscillation, which we anticipated 
in a general sense in the previous section, show up 
better in the magnitude square of the Fourier transform 
of the spectrum. This quantity, symbolized as Ut), is 
plotted in Figure 3a, and two frequencies are seen at  
130 and 40 ~ m - l . ~  A theory exists for computing C( t )  
by using only classical  mechanic^.^ The expression for 
C(t )  assumes that the motion is classically chaotic and 
inputs at each point on a grid of energies in the spectral 
region, a classical trajectory (which is expected to be 
and is chaotic) that is computed by using a well-tested 
(in the regular region) “ab initio” potential for Na3.12 

0 too 260 360 
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Figure 4. The averaged power spectrum of (a) the symmetric 
stretch coordinate and of (b) the bend coordinate. Reprinted with 
permission from ref 7. Copyright 1989 American Institute of 
Physics. 

Also input is a dipole transition operator function and 
qinitial which defines the Franck-Condon transition re- 
gion. If we are correct, our reduced-dimension torus, 
if it exists, must lie in this region if it is to contribute 
to the spectrum. C ( t )  can also be shown formally to be 
a survival probability function for the initially prepared 
local excitation. This is a function that has peaks at  
periods T (=2a/w) of repetitious motions (as could be 
expected if reduced-dimension tori exist). Since the 
experiment measures relative intensity, the computed 
C(t )  is matched at  one value of t to the experiment as 
shown in Figure 3b.13 The agreement of theory and 
experiment is excellent. Figure 3a yields w1 = 130 cm-l 
and o2 = 40 cm-l, and Figure 3b yields w1 = 128 cm-l 
and w2 = 44 cm-l. Since we used an ergodic (complete 
chaos phase space) assumption in deriving the expres- 
sion for C(t )  and chaotic trajectories in computing the 
result, we can now safely deem the spectrum “chaotic”. 

Having demonstrated the chaotic nature of the 
motion and the spectrum, we turn to the heart of our 
research, namely, the problem of extracting and inter- 
preting the regular motion that is argued to come from 
a reduced-dimension torus inserted in the chaotic 
m ~ t i o n . ~  The inserted regular motion is in this case two 
dimensional, since two fundamental frequencies for C( t )  
are seen in Figure 3b. This motion can be analyzed by 
computing averaged power spectral4 of various coor- 
dinates evaluated along the three-dimensional chaotic 
trajectory. Power spectra are basically Fourier trans- 
forms of the time evolution of a coordinate. The chaotic 
regions of the trajectories over which we average con- 
tribute small, almost never repeated, peaks at  the 
myriad of frequencies necessary to describe chaos. The 
regular region’s insert, when visited and revisited, al- 
ways adds to the intensity at the regular insert fre- 

(12) Thompson, T. C.; Izmirlian, G., Jr.; Lemon S. J.; Truhlar, D. G.; 
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quencies. At all energies in the spectral region, a result 
similar to Figure 4 occurs; namely, if the symmetric 
stretch or the bend coordinate is used, one obtains two 
narrow peaks at frequencies 131 and 44 cm-' near those 
of Figure 3. Clearly one can safely assume that in 
Figure 4a (4b), which is for the symmetric stretch 
(bend) coordinate, the big peak is the frequency of this 
symmetric stretch (bend), and the small peak is that 
of the bend (symmetric stretch). Note no asymmetric 
stretch appears, and a power spectrum of the asym- 
metric stretch gives no sharp peaks. Conclusion: our 
torus is reduced to two dimensions and must be a two 
degree of freedom symmetric stretch and bend family 
of tori that exist in the transition region and hence in 
the same region of position space, but at higher energy 
than the three-degree (symmetric stretch, bend, and 
asymmetric) tori that give the regular levels (by emis- 
sion from the same regular states). Our three-dimen- 
sional torus has lost a degree of freedom, the asym- 
metric stretch, and has become a chaotic trajectory with 
a two dimensional reduced dimension tori insert. 

Now having decided what one expects to see and 
where to see it, it is a simple matter to search the 
transition region for such an insert. We also need to 
check that other long-lived inserts do not exist. This 
latter is here the case except for a 1D torus (stable 
periodic orbit, see Figure la) which does not contribute 
significantly to C(t ) .  Such an insert was found and can 
be demonstrated to be very similar to a two degree of 
freedom torus (symmetric stretch and bend) by the 
following procedure. First, near the insert, the asym- 
metric displacement coordinate and its conjugate mo- 
mentum are set to 0, predestining the trajectory to lie 
in two dimensions. The resulting motion is the two- 
dimensional (symmetric stretch and bend) torus and 
actually was used as our example in Figure la. The 
frequencies of this torus are 135 and 46 cm-' and are 
extremely close to those of Figure 4 (obtained with the 
chaotic trajectory). Now the momentum and/or the 
position displacement of the asymmetric stretch is set 
near but not equal to 0. Motion similar to that of the 
torus is observed for picoseconds after which the tra- 
jectory moves ever farther away in the asymmetric 
stretch direction until it becomes chaotic in all variables; 
time reversal demonstrates the approach to the torus. 
The long-time power spectrum again becomes that of 
Figure 4. 

Recalling that the ground-state potential has a three 
blade propellor shape with symmetrically equivalent 
wells (that hold the five regular states), one in each 
blade, and three cols and saddle points at small radii 
between the blades, a pleasing physical picture arises 
from our results. A t  low energies, the four observable 
levels can be viewed as the result of a semiclassical 
quantization of tori with fundamental normal-mode 
frequencies wol = 139 cm-l (symmetric stretch or 
breathing), wO2 = 49 cm-' (obtuse bend), and a03 = 87 
cm-' (asymmetric stretch). Such tori lie in each one of 
the three symmetrically equivalent wells of the potential 
surface. The normal-mode frequencies calculated 

quantum mechanically in ref 2 (142, 58, and 94 cm-l, 
respectively) support this conclusion. (For complete- 
ness, we note that the fifth bound state (011) at roughly 
136 cm-' due to selection rules has not been observed 
experimentally.) Past the fourth level, the vibrational 
amplitudes are quite large and floppy, and the trajec- 
tory feels the confiiing walls of the potential. At about 
250 cm-l and along the asymmetric stretch coordinate 
(acute bend saddle point) direction, the walls fall away 
and open to the col between two of the three equivalent 
regions. Initially, only motion in this direction becomes 
unstable, leaving a CZu two degree of freedom family of 
tori describable as the combination of a symmetric 
stretch mode (now because of anharmonicity w1 = 135 
cm-') and an obtuse bend mode (now w2 = 40 cm-l). 
Later, as we move far along the asymmetric stretch 
direction and far from the two-dimensional torus, com- 
plete chaos takes over until a reduced-dimension torus 
is again approached. 

IV. Summary and Conclusion 
At this point our mission has been accomplished. We 

have a quantitative reproduction of the experimental 
spectral correlation function and a physical model of 
the motions consistent with it.7t9 The low-resolution 
spectrum is the key to the dynamics of chaotic spec- 
tra.7Js Other examples of the success of our ideas in 
interpreting chaotic spectra and extracting essential 
motions are seen in ref 10, which extracts motions in 
the chaotic region that accompany the photodissociation 
of H3+ and in ref 9, 10, and 14, where the motions 
of the highly excited electron in a hydrogen atom in a 
6-T (very strong) magnetic field are explained by using 
the quantum version of our theory to reproduce the low 
resolution of a chaotic two photon absorption spectrum. 

For completeness we note the existence of a fully 
quantum mechanical theorylob of low-resolution spectra 
in the chaotic region which treats the regions near the 
reduced-dimension tori as a transition state, or equiv- 
alently as a resonance state, and then using resonance 
scattering methods reproduces with relatively simple 
calculations the low-resolution spectra. The simple 
theory and example emphasized here were chosen for 
discussion because they require less background to 
comprehend while still exhibiting the important chem- 
ical features of the problem. 

Lastly we note that many of the ideas we used here 
for the classical mechanical description are similar to 
concept and ideas used in analyzing chaos in heartbeats 
and all the other phenomena and fields mentioned in 
the first paragraphs of this Account. 
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(15) This does not mean high-resolution spectra should not be mea- 
sured. Low-resolution spectra can be simulated from high-resolution 
spectra but not vice versa. Detailed measurement never fails to eventu- 
ally reveal unexpected phenomena. 


